A Moving Mesh WENO Method for One-Dimensional Conservation Laws

نویسندگان

  • Xiaobo Yang
  • Weizhang Huang
  • Jianxian Qiu
چکیده

In this paper, we develop an efficient moving mesh weighted essentially nonoscillatory (WENO) method for one-dimensional hyperbolic conservation laws. The method is based on the quasi-Lagrange approach of the moving mesh strategy in which the mesh is considered to move continuously in time. Several issues arising from the implementation of the scheme, including mesh smoothness, mesh movement restriction, and computation of transformation relations, and their effects on the accuracy of the underlying scheme have been addressed. Particularly, it is found that a least squares smoothing can be used to effectively smooth the mesh, and the transformation relations can be computed using either high order finite differences or WENO applied to some geometric conservation laws. Moreover, mesh movement can cause WENO schemes to become unconditionally unstable. A simple strategy is used to restrict the mesh movement and recover the stability. Numerical results are presented to demonstrate the accuracy and shock-capturing ability of the new scheme.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive WENO methods based on radial basis functions reconstruction

We explore the use of radial basis functions (RBF) in the weighted essentially non-oscillatory (WENO) reconstruction process used to solve hyperbolic conservation laws, resulting in a numerical method of arbitrarily high order to solve problems with discontinuous solutions. Thanks to the mesh-less property of the RBFs, the method is suitable for non uniform grids and mesh adaptation. We focus o...

متن کامل

Adaptive WENO Methods Based on Radial Basis Function Reconstruction

We explore the use of radial basis functions (RBF) in the weighted essentially non-oscillatory (WENO) reconstruction process used to solve hyperbolic conservation laws, resulting in a numerical method of arbitrarily high order to solve problems with discontinuous solutions. Thanks to the mesh-less property of the RBFs, the method is suitable for non-uniform grids and mesh adaptation. We focus o...

متن کامل

Positivity-preserving high-order schemes for conservation laws on arbitrarily distributed point clouds with a simple WENO limiter

This is an extension of our earlier work [9] in which a high order stable method was constructed for solving hyperbolic conservation laws on arbitrarily distributed point clouds. An algorithm of building a suitable polygonal mesh based on the random points was given and the traditional discontinuous Galerkin (DG) method was adopted on the constructed polygonal mesh. Numerical results in [9] sho...

متن کامل

Helicopter Rotor Airloads Prediction Using CFD and Flight Test Measurement in Hover Flight

An implicit unsteady upwind solver including a mesh motion approach was applied to simulate a helicopter including body, main rotor and tail rotor in hover flight. The discretization was based on a second order finite volume approach with fluxes given by the Roeand#39;s scheme. Discretization of Geometric Conservation Laws (GCL) was devised in such a way that the three-dimensional flows on arbi...

متن کامل

High order residual distribution conservative finite difference WENO schemes for steady state problems on non-smooth meshes

In this paper, we propose a high order residual distribution conservative finite difference scheme for solving steady state hyperbolic conservation laws on non-smooth Cartesian or other structured curvilinear meshes. WENO (weighted essentially non-oscillatory) integration is used to compute the numerical fluxes based on the point values of the solution, and the principles of residual distributi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 34  شماره 

صفحات  -

تاریخ انتشار 2012